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Question 1. (Total mark: 20)
We would like to identify components needed to build an exoskeleton system. An 
exoskeleton system is a device to improve the strength and endurance of human with 
the assistance of wearable robotic legs that support a payload. It is depicted in Figure 
1 (taken from the design of Berkeley Lower exoskeleton). 

Figure 1. Exoskeleton systems (taken from the Berkeley Lower exoskeleton model).

a) Describe at least two possible objectives that must be achieved by the 
complete exoskeleton system.  (5 marks)

b) Identify at least two possible types of actuators that can be used in the system 
and provide explanations for your choices (including their limitations, location 
of the actuators and source of auxiliary energy). (5 marks)

c) Identify all variables that should be measured (which will be used by the 
microprocessor to properly control the actuators) and find the at least two 
possible types of sensors for each measured variable. (5 marks)

d) Identify the possible reference signals that can be used by the controller 
(computer). (5 marks)

Answers:
a) First: Adjusting the exoskeleton in order to lift the payload. 



Second: Following the movement of the human operator while maintaining the 
upright stability. 

b) 1) Electric motor. 
Limitations: Only able to provide small power when a small motor size is used. 
Locations: On the exoskeleton joints.
Source of auxiliary energy: Electric source which can be fuel cell or batteries.

2) Hydraulic systems.
Limitations: It may require accummulator for maintaining sufficient pressure for 
standard operational. This component can be bulky. 
Locations: On the exoskeleton joints.
Source of auxiliary energy: Pressure container. 

3) Pneumatic systems.
Limitations: It may require accummulator for maintaining sufficient air pressure for 
standard operational. This component can be bulky.
Locations: On the exoskeleton joints.
Source of auxiliary energy: Air pressure container.

c) Variables to be measured:
- angular position of the actuator (exoskeleton joints)
- payload weight

Sensor to measure these variables:
- Positional sensor for the angular position. This can be optical encoder or hall 

sensor.
- Force or pressure sensor for measuring the payload weight. This can be strain 

gauge-based sensor.

d) Possible reference signal:
- angular position of the human operator joints.
- centre of gravity of the human and the exoskeleton system.

Question 2. (Total mark: 20)
In an automated factory, robotic arms is usually used for pick-and-place task. 
Consider the configuration in Figure 2, where a 1 degree-of-freedom robotic hand is 
used to sort goods from the main conveyor belt into two different conveyor belts 
based on their weight. There are two different goods which can be differentiated by 
their weight, m1 and m2. The robot is actuated by a shunt-wound DC motor.



Figure 2. An automated sorting system.

a) Identify all variables that should be measured (which will be used by the 
microprocessor to properly control the robotic arm and to decide which belt 
the goods should be put) and find the at least two possible types of sensors for 
each measured variable. (5 marks)

b) Let the transfer function of a shunt-would DC motor from the input voltage V 
to the angular displacement θ be given by
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where J is the moment inertia of the motor and the robotic arm, Jload is the 
moment inertia from the load (i.e., Jload = m1l2 when goods with m1 is picked 
up, Jload = m2l2 when goods with m2 is collected and Jload = 0 when the arm does 
not carry any load). The parameters ψ, RA and LA are the flux linkage, the 
armature resistance and the armature inductance, respectively, with positive 
values. 
Using a PI controller with transfer function C(s) = Kp + Ki/s, find the 
conditions on Kp and Ki such that the closed-loop systems remains stable for 
the three cases: with load m1, with load m2 and without any load. (Hint: apply 
the Routh-Hurwitz stability test for each case to determine the interval that Kp 

and Ki have to satisfy.) (15 marks)

Answers:
a) Variables to be measured:
- Weight of the load (to differentiate between no load, first load or the second load).
- Angular position of the motor (to control the direction of the arm for properly 
sorting the goods).
Possible type of sensors for measuring the weight: piezo electric force sensor or force 
spring deflection sensor. 
Possible type of sensors for measuring the angular position: optical encoder, hall 
sensor, inductive sensing elements, etc. (see also Chapter 9 of Isermann’s book).

b)
Let us denote G(s) = θ(s)/V(s), and C(s) = Kp + Ki/s. Now, the sensitivity transfer 
function is given by 
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So, the stability is checked by evaluating the polynomial (the denominator of the 
above sensitivity tranfer function):
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By using Routh-Hurwitz stability test, we need the following:
- All coefficients in χ must be positive and non-zero. This implies that Kp>0 and 

Ki>0.
- The first column of Routh array must not changed sign. The Routh array for χ 

is given by
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We now need to check the condition that makes the first column of the Routh array do 
not change sign. 
Since the first row and the second row are positive, then in order to make the third 
row remains non-negative, we suffice to have
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Now, for the fourth row to remain non-negative, we only need to have the numerator 
to be positive (remember that the denominator is positive due to Eq. (1), that is if we 
choose Kp to satisfy Eq. (2)). Hence
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Now, the remaining condition is to have the fifth row to remain non-negative. This 
holds if Ki >0.

Combining all the above conditions on Kp and Ki, we need the following for each 
cases:
Without load:
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Therefore, if the PI controller needs to stabilize the system for all three cases, then we 
need to find the intersection of the above inequalities. This means that the common 
stabilizing Kp and Ki for all the three cases satisfy:
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Question 3. (Total mark: 20)
Consider the two-link planar manipulator as shown in Figure 3. The kinetic energy of 
the manipulator is given by 
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link, J2 is the moment inertia of the second link, m2 is the mass of the second link, l1 

and l2 are the length of the first and second link, respectively. The potential energy is 
given by
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where g is the gravitational acceleration.
a) Derive the motion of equations of the manipulator using Euler-Lagrange 

equations using the angle q1 and q2 as the generalized variables (the motion of 
equations should be in the form of TqGqqqDqqM =++ )(),()(   where T is 
the torque). (20 marks)

Figure 3. Two link planar manipulator.

Answers:

The Lagrangian is given by L = Ek-Ep. Using the kinetic and potential energy given in 
the question, the Lagrangian is simply:
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The Euler-Lagrange equation for the first generalized coordinate q1 is given by:
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A standard computation gives us the following:
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The Euler-Lagrange equation for the second generalized coordinate q2 is given by:
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A standard computation gives us the following:
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So, we have the following two equations of motion:

121
22

112
11

2
22

212
12221222211211

)cos(
2

cos
2

)sin(
2

)sin()()(

Tqq
glm

qglm
glm

qq
llm

qqqllmqqJqqJ

=++




 ++

−−+ 

    and

221
222

122122221221 )cos(
2

)sin(
2

1
)( Tqq

glm
qqllmqJqqJ =++++ 

We combine these two equations into the form TqGqqqDqqM =++ )(),()(   
where 









=

2

1

q

q
q  as follows:











=



















+

++




 +

+


























−

−−
+

















2

1

21
22

21
22

112
11

2

1

12
212

22
212

22212

2

1

22221

221211

)cos(
2

)cos(
2

cos
2

0)sin(
2

)sin(
2

)sin(

)(

)()(

T

T

qq
glm

qq
glm

qglm
glm

q

q

qq
llm

qq
llm

qqllm

q

q

JqJ

qJqJ













Question 4. (Total mark: 40)
A Segway transportation vehicle, shown in Figure 4(a), is a two-wheeled device that 
can be steered by controlling the angle of the steering bar. When it moves forward or 
backward, it can be modeled as an inverted pendulum as depicted in Figure 4(b). The 
pivot of the pendulum is mounted on a base that can move in a horizontal direction. 
The base is mounted on a wheel driven by a motor that exerts torque T. The mass of 
the base and wheel is M and the mass of the pendulum is m. Assume that the wheel is 
not slipping on the surface, i.e., the horizontal force  F =  T/R is exerted on the base 
where R is the radius of the wheel.

In order to use the Newtonian approach, the inverted pendulum can be decomposed 
into two components as illustrated in Figure 4(c) and 4(d). 

In Figure 4(c), there are two forces acting on the base,  F being the force exerted by 
the motor and H being the reaction force from the pendulum. 

Figure 4(d) shows the forces acting on the pendulum, which are mg at the center of 
mass, the reaction horizontal force from the base H, the vertical reaction force from 
the base  V at the pivot of the pendulum, the horizontal force  T/L cosθ and vertical 
force T/L sin θ at the center of mass due to the reaction torque from the wheel. The 
distance from the center of mass to the pivot is given by L.

a) Using the diagram in Figure 4(d), write down the horizontal and vertical 
Newton’s laws of the pendulum at the center of mass. (Note that the 
coordinate of centre of mass is (x+Lsinθ,Lcosθ).) (Marks: 4).

b) Using the diagram in Figure 4(d), write down the rotational motion of the 
pendulum around the center of mass. (You can use J as the moment inertia of 
the pendulum). (Marks: 3).

c) Using the diagram in Figure 4(c), write down the horizontal Newton’s laws of 
the base. (Marks: 3).

d) Based on these three equations in the above questions, shows that the 
equations of motion reduce to 
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(Marks: 20).
e) Write down the state equations with T as the input and θ as the measurement 

output. (Marks: 10).

(a) (b)

θ



(c)                                                           (d)
Figure 4. Modeling the Segway transportation system.

Answers:

a)
The horizontal Newton’s law is given by
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Similarly, the vertical Newton’s law is given by

2

2

2

)cos()sin(sin

))sin((sin

)cos(
sin

θθθθθ

θθθ

θθ





mLmLmg
L

T
V

L
dt

d
mmg

L

T
V

dt

Ld
mmg

L

T
V

−−=−+⇔

−=−+⇔

=−+

b)
Rotational motion around the centre of mass is given by
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c)
The horizontal motion of the base is given by
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The four equations that we have, so far, are
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Substituting (3) to (6) gives us
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Substituting (3) and (4) into (5), gives us
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where the second equivalence (equation) is due to the fact that 1cossin 22 =+ θθ .

The combination of the above two equations of motion from (7) and (8) can be written 
also in the following form:
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e)
Note that the equations of motion found in the question part d) can also be written as:
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Now, using xxxx === 321 ,, θθ   and xx =4 , the state equation can be written as 
follows:
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