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Question 1. (Total mark: 20)

We would like to identify components needed to build an exoskeleton system. An
exoskeleton system is a device to improve the strength and endurance of human with
the assistance of wearable robotic legs that support a payload. It is depicted in Figure
1 (taken from the design of Berkeley Lower exoskeleton).
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Figure 1. Exoskeleton systems (taken from the Berkeley Lower exoskeleton model).

a) Describe at least two possible objectives that must be achieved by the
complete exoskeleton system. (5 marks)

b) Identify at least two possible types of actuators that can be used in the system
and provide explanations for your choices (including their limitations, location
of the actuators and source of auxiliary energy). (5 marks)

c) Identify all variables that should be measured (which will be used by the
microprocessor to properly control the actuators) and find the at least two
possible types of sensors for each measured variable. (5 marks)

d) Identify the possible reference signals that can be used by the controller
(computer). (5 marks)

Answers:
a) First: Adjusting the exoskeleton in order to lift the payload.



Second: Following the movement of the human operator while maintaining the
upright stability.

b) 1) Electric motor.

Limitations: Only able to provide small power when a small motor size is used.
Locations: On the exoskeleton joints.

Source of auxiliary energy: Electric source which can be fuel cell or batteries.

2) Hydraulic systems.

Limitations: It may require accummulator for maintaining sufficient pressure for
standard operational. This component can be bulky.

Locations: On the exoskeleton joints.

Source of auxiliary energy: Pressure container.

3) Pneumatic systems.

Limitations: It may require accummulator for maintaining sufficient air pressure for
standard operational. This component can be bulky.

Locations: On the exoskeleton joints.

Source of auxiliary energy: Air pressure container.

¢) Variables to be measured:
- angular position of the actuator (exoskeleton joints)
- payload weight
Sensor to measure these variables:
- Positional sensor for the angular position. This can be optical encoder or hall
sensor.
- Force or pressure sensor for measuring the payload weight. This can be strain
gauge-based sensor.

d) Possible reference signal:
- angular position of the human operator joints.
- centre of gravity of the human and the exoskeleton system.

Question 2. (Total mark: 20)

In an automated factory, robotic arms is usually used for pick-and-place task.
Consider the configuration in Figure 2, where a 1 degree-of-freedom robotic hand is
used to sort goods from the main conveyor belt into two different conveyor belts
based on their weight. There are two different goods which can be differentiated by
their weight, m; and m,. The robot is actuated by a shunt-wound DC motor.
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Figure 2. An automated sorting system.

a) Identify all variables that should be measured (which will be used by the
microprocessor to properly control the robotic arm and to decide which belt
the goods should be put) and find the at least two possible types of sensors for
each measured variable. (5 marks)

b) Let the transfer function of a shunt-would DC motor from the input voltage V'
to the angular displacement € be given by
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where J is the moment inertia of the motor and the robotic arm, Jio.q 1S the
moment inertia from the load (i.e., Jiwa = m:1I* when goods with m; is picked
up, Jiad = mal> when goods with m; is collected and Ji,a = 0 when the arm does
not carry any load). The parameters y, Rx and L, are the flux linkage, the
armature resistance and the armature inductance, respectively, with positive
values.
Using a PI controller with transfer function C(s) = K, + Ki/s, find the
conditions on K, and K such that the closed-loop systems remains stable for
the three cases: with load m,, with load m, and without any load. (Hint: apply
the Routh-Hurwitz stability test for each case to determine the interval that K,
and K; have to satisfy.) (15 marks)

Answers:

a) Variables to be measured:

- Weight of the load (to differentiate between no load, first load or the second load).

- Angular position of the motor (to control the direction of the arm for properly
sorting the goods).

Possible type of sensors for measuring the weight: piezo electric force sensor or force
spring deflection sensor.

Possible type of sensors for measuring the angular position: optical encoder, hall
sensor, inductive sensing elements, etc. (see also Chapter 9 of Isermann’s book).

b)
Let us denote G(s) = 0(s)/V(s), and C(s) = K, + Ki/s. Now, the sensitivity transfer
function is given by
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So, the stability is checked by evaluating the polynomial (the denominator of the
above sensitivity tranfer function):

X(S) = (J +Jl()ad )LAs4 +(J +Jl()ad )RAS3 +w252 +lleS +l/Ki

By using Routh-Hurwitz stability test, we need the following:
- All coefficients in x must be positive and non-zero. This implies that K,>0 and

K>0.
- The first column of Routh array must not changed sign. The Routh array for
is given by
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We now need to check the condition that makes the first column of the Routh array do
not change sign.
Since the first row and the second row are positive, then in order to make the third
row remains non-negative, we suffice to have
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Since the denominator is always positive, then the above inequality holds if
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Or, equivalently,
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Now, for the fourth row to remain non-negative, we only need to have the numerator
to be positive (remember that the denominator is positive due to Eq. (1), that is if we
choose Kp to satisfy Eq. (2)). Hence
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Now, the remaining condition is to have the fifth row to remain non-negative. This
holds if K; >0.

Combining all the above conditions on K, and Kj, we need the following for each
cases:
Without load:
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Therefore, if the PI controller needs to stabilize the system for all three cases, then we
need to find the intersection of the above inequalities. This means that the common
stabilizing K, and K; for all the three cases satisfy:
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Question 3. (Total mark: 20)

Consider the two-link planar manipulator as shown in Figure 3. The kinetic energy of
the manipulator is given by
() Iy (g,) g, C
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where J,,(q,) =J, +J, +m,I} +m,l [, cosq,,
[ ) . .
J,(q,) =J,,(q,) =, +%cosq2, J,, =J,,J; is the moment inertia of the first

link, J is the moment inertia of the second link, m., is the mass of the second link, /,

and /, are the length of the first and second link, respectively. The potential energy is
given by

E,= élhzgll +m,gl, %in% +szg125in(Q1 +q,)
where g is the gravitational acceleration.

a) Derive the motion of equations of the manipulator using Euler-Lagrange
equations using the angle g, and ¢, as the generalized variables (the motion of
equations should be in the form of M (¢)q +D(q,q)q +G(q) =T where T is
the torque). (20 marks)
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Figure 3. Two link planar manipulator.

Answers:

The Lagrangian is given by L = Ey-E,. Using the kinetic and potential energy given in
the question, the Lagrangian is simply:
L=E, -E,

1 . . : gl . m,gl, .
E(Jll(Q2)%2 +2J,,(9,)9,9, +J22Q22)_%+m2g11 an% - 22 2 sin(qg, +q,)

The Euler-Lagrange equation for the first generalized coordinate ¢, is given by:

d[PpLH oL _
dt [9q, 0 0q, '

A standard computation gives us the following:
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The Euler-Lagrange equation for the second generalized coordinate ¢, is given by:
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A standard computation gives us the following:
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So, we have the following two equations of motion:
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We combine these two equations into the form M (¢)q +D(q,q)q +G(q) =

where

C
q= EQI [ as follows:

9.
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Question 4. (Total mark: 40)

A Segway transportation vehicle, shown in Figure 4(a), is a two-wheeled device that
can be steered by controlling the angle of the steering bar. When it moves forward or
backward, it can be modeled as an inverted pendulum as depicted in Figure 4(b). The
pivot of the pendulum is mounted on a base that can move in a horizontal direction.
The base is mounted on a wheel driven by a motor that exerts torque 7. The mass of
the base and wheel is M and the mass of the pendulum is m. Assume that the wheel is
not slipping on the surface, i.e., the horizontal force F' = T/R is exerted on the base
where R is the radius of the wheel.

In order to use the Newtonian approach, the inverted pendulum can be decomposed
into two components as illustrated in Figure 4(c) and 4(d).

In Figure 4(c), there are two forces acting on the base, F being the force exerted by
the motor and H being the reaction force from the pendulum.

Figure 4(d) shows the forces acting on the pendulum, which are mg at the center of
mass, the reaction horizontal force from the base H, the vertical reaction force from
the base V' at the pivot of the pendulum, the horizontal force 7/L cosf and vertical
force 7/L sin O at the center of mass due to the reaction torque from the wheel. The
distance from the center of mass to the pivot is given by L.

a) Using the diagram in Figure 4(d), write down the horizontal and vertical
Newton’s laws of the pendulum at the center of mass. (Note that the
coordinate of centre of mass is (x+Lsiné,Lcos#).) (Marks: 4).

b) Using the diagram in Figure 4(d), write down the rotational motion of the
pendulum around the center of mass. (You can use J as the moment inertia of
the pendulum). (Marks: 3).

¢) Using the diagram in Figure 4(c), write down the horizontal Newton’s laws of
the base. (Marks: 3).

d) Based on these three equations in the above questions, shows that the
equations of motion reduce to
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(Marks: 20).
e) Write down the state equations with 7" as the input and € as the measurement
output. (Marks: 10).
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Figure 4. Modeling the Segway transportation system.

Answers:

a)
The horizontal Newton’s law is given by
d’(x + Lsin 6)

dt’

H —Zcos9=m
L
H —Zcose—mbé +mi(LCOS(@9)
L dt

- H —%cos 6 = mx +mL cos(6)0 —mL sin(6)6°

Similarly, the vertical Newton’s law is given by
2
V +£sin9—mg =m—d (LCZOSQ)
L dt
v+ Lsin0—m —mi(—Lsin(e)é)
L E"
-V +%sin 6 —mg =—mLsin(8)0 —mL cos(6)6>

b)
Rotational motion around the centre of mass is given by
JO =VLsin 8—HL cos 8

c)
The horizontal motion of the base is given by
mi=L —g
R
d)

The four equations that we have, so far, are



H —%cos 6 =mx +mL cos(6)8 —mL sin(6)6° 3)

V +%sin9—mg =-mL sin(@)é—mL cos(H)é2 4
JO =VLsin 6—HL cos 6 (5)

. T
Mi=——H

= ()

Substituting (3) to (6) gives us
Mx =— —% cos @ —mx —mL cos(H)é +mL sin(H)Q2

= (M +m)X +mL cos(6)8 —mLsin(6)6° =%—%cos€

(7)
Substituting (3) and (4) into (5), gives us
Jo = %—%sin B+mg —mL sin(Q)é —mL cos(H)Q2 @sin e
- % cos @+mx +mL cos(6)8 —mLsin(6)6” g, cos @
= JO=—Tsin> (6) +mgLsin(@) —mL’ sin® (9)9 —mL’ sin(6) cos(Q)Q2
—T cos’(6) —mL cos & —mlL* cos’ (H)é +mlL’* sin(6) cos(H)Q2
- JO@=-T +mgL sin(6) —mL*6@ —mL cos &
= (J +mlL? )é+mL cos & —mgLsin(6) =T
(8)

where the second equivalence (equation) is due to the fact that sin® @ +cos* 8 =1.

The combination of the above two equations of motion from (7) and (8) can be written

Jal 1) OHHTNH-mgLsinHH_HT -TT |
%mLcosH m+MHHj£ %mLH il OH)% H () H ) iCOSHH

e)

Note that the equations of motion found in the question part d) can also be written as:
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where A(@) =(J +mL)(m +M) —(mLcos6)” is the determinant of
[V +mL*> mL cos 8L
EnL cos@ m+M E

Now, using x, =6,x, = 6, x; =x and x, =x, the state equation can be written as
follows:
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